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We introduce a cyclic coefficient R which characterizes the degree of circulation in complex networks. If a
network has a perfect treelike structure, then R becomes zero. The larger value of R represents that the network
has more cyclic structure. We measure both the cyclic coefficients and the distributions of local cyclic coeffi-
cients for various networks and discuss the cyclic structures of them.
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During recent years, there have been considerable efforts
in studying the structure of complex networks �1�. They ap-
pear in a variety of systems such as biological �2–4�, social
�5–8�, informational �9,10�, and economic �11� systems.
Such complex networks are characterized by some topologi-
cal and geometric properties such as small worlds, a high
degree of clustering, and scale-free topology. The small-
world property denotes that the average shortest path length
L between vertex pairs in a network grows logarithmically
with network size N. The clustering structure is characterized
by the clustering coefficient C which is the fraction of pairs
between the neighbors of a vertex that are directly connected
to each other. The high degree of clustering indicates that if
vertices A and B are linked to vertex C, then A and B are also
likely to be linked to each other. These two properties are
realized by the small-world network �SWN� model �12� in
which randomly selected vertex pairs are linked by shortcuts.
The scale-free �SF� topology reflects that the degree distri-
bution P�k� follows a power law P�k��k−�, where the de-
gree k is the number of edges of a given vertex and � is the
degree exponent. An evolving model introduced by Barabási
and Albert �BA� �13� illustrates the SF property very well.

Recently, much attention has been focused on the struc-
tural properties of complex networks. A hierarchical struc-
ture appears in some real networks, and it has been clarified
by a power-law behavior of the clustering coefficient C�k� as
a function of the degree k �14–19�. This indicates that the
networks are fundamentally modular. It is the origin of the
high degree of clustering of the networks. Also, it was re-
cently found that many real networks include statistically
significant subnetworks, so-called motifs, in their structures
�20–22�. Especially, recent studies of the topological proper-
ties in complex networks have paid much attention to the
loop �cycle� structure. In comparison with a treelike topol-
ogy, loops provide more paths along which information or a
virus can propagate. So loops can affect the delivery of in-
formation, transport process, and epidemic spreading behav-
ior �23�. In considering the loop structure, a cycle of order k
is defined as a closed loop composed of k edges. That is, a
triangular structure has a cycle of order 3, and a rectangular

structure has a cycle of order 4. If there is no closed loop
passing through a vertex, then it is assumed that it has a
cycle of infinite order. Actually, the clustering coefficient
counts for the triangular structure only. However, there are
many other closed loops of higher orders consisting of more
than three edges. There have been some previous studies
�24–27� about cycles of order 4 or 5. So it is natural to
consider loops of all orders to characterize the cyclic struc-
ture.

In this paper, we introduce a new quantity R and a local
quantity r which characterize the degree of circulation in
complex networks in order to consider the loops of all orders
from 3 up to infinity. By monitoring R and the distribution of
r, we discuss the cyclic topology for both several real net-
works from technological to social systems and network
models such as the SWN and BA models.

We define a local cyclic coefficient ri for a vertex i as the
average of the inverse size of the smallest loop that connects
the vertex i and its two neighbor vertices—i.e.,

ri =
2

ki�ki − 1� ��lm�

1

Slm
i , �1�

where ki is the degree of the vertex i and �lm� is for all the
pairs of neighbors of the vertex i. Slm

i is the smallest size of
the closed path that passes through vertex i and its two
neighbor vertices l and m. There are ki�ki−1� /2 of such pairs
of neighbors. If vertices l and m are directly linked to each
other, then vertices i, l, and m form a triangle. It is a cycle of
order 3 and Slm

i has a value 3, which is the smallest value of
S. If there does not exist any path that connects vertices l and
m except for the path through the vertex i, then vertices i, l,
and m have a tree structure. In this case, there is no closed
loop passing through the three vertices i, l, and m where Slm

i

is infinity. The vertex i has a cycle of infinite order. For an
example shown in Fig. 1�a� the local cyclic coefficient of the
vertex � is r�=0.13 with S12

� =3, S23
� =4, S13

� =5, and S14
�

=S24
� =S34

� =�.
We define a cyclic coefficient R as the average of ri over

all the vertices, R= �ri�. It has a value between zero and 1/3.
R=0 means that the network has a perfect treelike structure
without having any loops. Meanwhile, if all the neighbor
pairs of the vertices have direct links to each other, then the*Electronic address: jmkim@physics.ssu.ac.kr
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cyclic coefficient becomes R=1/3. Figures 1�b� and 1�c�
show two examples of R=0 and R=0.29, respectively, for
the same network size N=25. Thus the larger the cyclic co-
efficient R is, the more cyclic the network is. The cyclic
coefficient R is a good quantity to identify the degree of
circulation in complex networks.

In order to characterize the cyclic topology, we measure
the cyclic coefficient R and the distribution of the local cy-
clic coefficient P�r� for several real networks �28� appearing
in biological, technological, and social systems. In this mea-
surement, we exclude the isolated vertices and focus on the
entirely connected part of the network.

First, we consider a protein network �3� which is com-
posed of 1458 proteins. It has 1948 identified direct physical
interactions. The proteins and direct interactions are consid-
ered as vertices and edges, respectively. Figure 2�a� shows
the histogram of the distribution P�r� of the local cyclic co-
efficient. About 60% of the total vertices have r=0, and P�r�
has a small value for the other range 0�r�1/3. We obtain
a small value of the cyclic coefficient R	0.06. The network
has a treelike structure with few loops. Thus the treelike

topology of the protein network visualized in �3� is well
quantified by the distribution function P�r�.

Second, a physical Internet network �9� at the interdomain
�autonomous system �AS�� level is considered. Each domain,
composed of hundreds of routers and computers, acts as a
vertex. An edge is drawn between two domains if there is at
least one route that connects them directly. The network at
the AS level of 15 September 1999 is composed of both 5746
vertices and 11 017 edges. We obtain R	0.16 in the net-
work. The distribution of the local cyclic coefficient is shown
in Fig. 2�b�; it has big three peaks at r=0, r=0.25, and r
=1/3. That is, many vertices have tree structures �r=0� and
the rest of the vertices have loops of small sizes �three or
four�.

Third, we consider a network of scientific collaborations
in the field of mathematics published in the period 1991–
1998 �6�, in which the vertices are the scientists. They are
connected if they write a paper together. The total number of
vertices and edges are 57 516 and 143 778, respectively. We
obtain R	0.19 in the network. Figure 2�c� shows the prob-
ability distribution of r. It has a strong peak at r=1/3, which
indicates that cycles of order 3 are very dominant in the
networks. It is quite different from the characteristics of P�r�
in the protein and Internet networks where treelike structures
are more dominant.

Finally, we consider a movie actor collaboration network
�5� which has 9865 vertices and 273 412 edges. The actors
are treated as vertices, and two vertices are linked if the
corresponding actors have acted in the same movie together.
As shown in Fig. 2�d�, the probability distribution P�r� has a
maximum value at r=1/3, which reflects the high degree of
clustering in the social network. Meanwhile, there are almost
no vertices having r=0 in contrast to the case of the other
networks. This explains that the movie actor network is more
cyclic with large values of the cyclic coefficient R	0.29.

From the results of the above four examples, we have
found that both clustered parts and nonclustered parts coexist
in real networks especially in the math coauthorship net-
work. The probability distribution P�r� is not uniform at all.
Instead, there are a few peaks at certain values of r such as
r=0 or r=1/3. It means that most of vertices have either
triangle structure or tree structure with the neighbor vertices.
That is, the neighbor vertices in the well-clustered parts have
high connections with each other while the vertices in the
nonclustered parts have tree structures. Thus by measuring
the distribution of the local cyclic coefficient we can under-
stand the details of the cyclic structure in the complex net-
works.

We have also considered the cyclic coefficient R for two
representative models of complex networks, the SWN �12�
and BA �13� models. The algorithm of the SWN model is the
following: Consider a one-dimensional lattice of N vertices
with periodic boundary conditions—i.e., a ring—and connect
each vertex to its nearest m neighbors. The small-world
model is then created by randomly rewiring each edge of the
lattice with probability p, moving one end of the edge to a
new vertex chosen randomly from the lattice, except that
self-connections and duplicate edges are created. This rewir-
ing process introduces pNm /2 shortcuts which connect the

FIG. 1. �a� Typical examples which have different cyclic coef-
ficients are shown. The local cyclic coefficient of the solid circle is
r�=0.13. The two sample networks with the same network size N
=25 and the different cyclic coefficients are shown in �b� and �c�
where R=0 and R=0.29, respectively.

FIG. 2. The probability distribution of local cyclic coefficient
for four real networks, �a� protein network, �b� internet network, �c�
math coauthorship network, and �d� movie actor collaboration
network.
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vertices at long distance. The transition between regular lat-
tice network �p=0� and random network �p=1� �29� can be
shown by varying p.

Figure 3 shows the plot of the normalized clustering co-
efficient C�p� /C�0� and the normalized cyclic coefficient
R�p� /R�0� as a function of the rewiring probability p with
the network size N=10 000 and m=4. The clustering coeffi-
cient stays almost unchanged for p�0.01 and drops to zero
at p=1. It is the characteristics of the SWN with a high
degree of clustering for p�0.01. The cyclic coefficient R�p�
also has almost the same value of R�0� for p�0.01 while it
decreases to a finite value with increasing p. The finite value
of R�1� comes from the contribution of loops of all orders.
The inset of Fig. 3 shows a Poisson-like distribution of P�r�
for the random network �p=1�. The cyclic probability distri-
bution has a peak at r=0.11 with R	0.11. It is interesting
that P�r� is almost zero for both r=0 and r=1/3 in the ran-
dom network.

We also measure the cyclic coefficient for the BA model

�13�. The BA model is carried out as follows: Start from a
small number N0 of vertices and no edges. At every time
step, a new vertex with m ��N0� edges is added where the m
edges link the new vertex to m different existing vertices in
the system. The m vertices to which the new vertex is con-
nected are chosen with the preferential attachment rule in
which the probability � for a vertex i to be connected with a
new vertex depends on the degree ki of the vertex i, such that
��ki�=ki /� jkj. We have obtained R	0.17 with the network
size N=10 000 for the BA model. As shown in Fig. 4, the
distribution of the local cyclic coefficient in the BA model
shows a Poisson-like shape having a peak at r=0.16. How-
ever, in the real networks given above, the probability distri-
butions P�r� do not follow a Poisson-like shape and have a
peak at either r=0 or r=1/3. There exists neither triangle
nor tree structure in the BA model, in contrast to the case of
the real networks. The Poisson-like distribution of P�r� is
one of the specific characteristics of the BA networks.

We summarized the various data of the network size N,
the mean degree �k�, the clustering coefficient C, the cyclic
coefficient R, the cyclic probability distribution P�0� with r
=0 �tree structure�, and P�1/3� with r=1/3 �cyclic structure
of loops with length 3� in Table I for various networks.

In conclusion, we introduced a cyclic coefficient R to
evaluate the degree of circulation and measured R in various

FIG. 3. The normalized cyclic coefficient R�p� /R�0� �circles�
and the normalized clustering coefficient C�p� /C�0� �squares� are
given for the SW network model where R�0� and C�0� are 0.283
and 0.5, respectively, for the regular network. The distribution of
local cyclic coefficient for the random network �p=1� is shown in
the inset.

FIG. 4. The distribution of local cyclic coefficient for the BA
model.

TABLE I. For both four real networks and two network models, we summarized the various data of the network size N, the mean degree
�k�, the clustering coefficient C, the cyclic coefficient R, the probability distribution P�0� with r=0 �tree structure�, and P�1/3� with r
=1/3 �cyclic structure of loops with length 3�.

Network N �k� C R P�0� P�1/3�

Protein interactions 1458 2.67 0.07 0.06 0.60 0.04

Internet 5746 3.83 0.24 0.16 0.38 0.19

Math coauthorship 57516 5.00 0.48 0.19 0.24 0.35

Movie actor collaborations 9853 54.95 0.58 0.29 0.01 0.34

Random network �p=1� 10000 4 0.0003 0.11 0 0

BA network 10000 6 0.006 0.17 0 0
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networks. It includes the effects of all sizes of loops. If a
network has a perfect treelike structure, R becomes zero. The
value of cyclic coefficient is in between zero and 1/3. The
larger the cyclic coefficient is, the more cyclic the network
becomes. We measured the cyclic coefficients for various
real complex networks and the representative network mod-
els. For the protein network of a biological system the cyclic
coefficient is small. It reflects the fact that the network is tree
like. For the movie actor collaboration network social sys-
tem, we found that its structure is more cyclic with a large
cyclic coefficient. Also by measuring the probability distri-

bution of the local cyclic coefficient, we could classify the
cyclic structures of the networks. Thus the cyclic coefficient
and the distribution of the local cyclic coefficient help us to
understand the structures of complex networks. It would be
interesting to measure the cyclic coefficient for various other
networks and compare it with our results.

One of us �J.M.K.� thanks the Korea Institute for Ad-
vanced Study for its hospitality during his stay. This work
was supported by Korea Research Foundation Grant No.
KRF-2003-015-C00003.

�1� M. E. J. Newman, SIAM Rev. 45, 167 �2003�; R. Albert and
A. L. Barabábasi, Rev. Mod. Phys. 74, 47 �2002�; S. N. Dor-
ogovtsev and F. F. Mendes, Adv. Phys. 51, 1079 �2002�.

�2� H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L.
Barabási, Nature �London� 407, 651 �2000�.

�3� H. Jeong, S. Mason, R. Albert, A.-L. Barabási, and Z. N.
Oltvai, Nature �London� 411, 41 �2001�.

�4� A.-L. Barabási and Z. N. Oltvai, Nature �London� 5, 101
�2004�.

�5� M. E. J. Newmann, S. H. Strogatz, and D. J. Watts, e-print
cond-mat/0007235; A.-L. Barabási and R. Albert, Science
286, 509 �1999�.

�6� M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A. 98, 404
�2001�.

�7� A.-L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schbert, and
T. Vicsek, e-print cond-mat/0104162.

�8� F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, and
Y. Averg, Nature �London� 411, 907 �2001�.

�9� M. Faloutsos, P. Faloutsos, and C. Faloutsos, in Proceedings of
ACM SIGCOMM ’99 �Comput. Commun. Rev.29, 251
�1999��; R. Pastor-Satorras, A. Vázquez, and A. Vespignani,
Phys. Rev. Lett. 87, 258701 �2001�.

�10� R. Albert, H. Jeong, and A.-L. Barabási, Nature �London� 401,
130 �1999�.

�11� H.-J. Kim, Y. Lee, B. Kahng, and I.-m. Kim, J. Phys. Soc. Jpn.
71, 2133 �2002�.

�12� D. J. Watts and S. H. Strogatz, Nature �London� 393, 440
�1998�; D. J. Watts, Small Worlds: The Dynamics of Networks
between Order and Randomness �Princeton University Press,
New York, 1999�.

�13� A.-L. Barabási and R. Albert, Science 286, 509 �1999�; A.-L.

Barabási, R. Albert, and H. Jeong, Physica A 272, 173 �1999�.
�14� E. Ravasz and A.-L. Barabási, Phys. Rev. E 67, 026112

�2003�.
�15� S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Phys.

Rev. E 65, 066122 �2002�.
�16� G. Szabo, M. Alava, and J. Kertész, e-print cond-mat/0208551.
�17� M. E. J. Newman, Phys. Rev. E 68, 026121 �2003�.
�18� K. Klemm and V. M. Eguiluz, Phys. Rev. E 65, 036123

�2002�.
�19� A. Vazquez, R. Pastor-Satorras, and A. Vespignani, Phys. Rev.

E 65, 066130 �2002�.
�20� R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii,

and U. Alon, Science 298, 824 �2002�.
�21� N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon �unpublished�.
�22� V. P. Zhigulin, e-print cond-mat/0311330.
�23� T. Petermann and P. De Los Rios, Phys. Rev. E 69, 066116

�2004�.
�24� G. Bianconi and A. Capocci, Phys. Rev. Lett. 90, 078701

�2003�.
�25� G. Caldarelli, R. Pastor-Satorras, and A. Vespignani, e-print

cond-mat/0212026.
�26� H. D. Rozenfeld, J. E. Kirk, E. M. Bolt, and D. ben-Avraham,

e-print cond-mat/0403536.
�27� A. Fronczak, J. A. Holyst, M. Jedynak, and J. Sienkiewicz,

Physica A 316, 688 �2002�.
�28� The data of the real networks used in this paper are publicly

available at http://www.nd.edu/~networks and http://
stat.kaist.ac.kr

�29� P. Erdós and A. Rényi, Publ. Math. �Debrecen� 6, 290 �1959�;
B. Bollobás, Random Graphs �Academic Press, London,
1985�.

H.-J. KIM AND J. M. KIM PHYSICAL REVIEW E 72, 036109 �2005�

036109-4


